
Jill Eddison

The Rhee, a prominent 12 km-long embanked waterway, crossed Romney Marsh from the upland to the sheltered marine inlet on which the medieval port of Romney was based. It crossed marshland which had previously been reclaimed. In contrast to early medieval channels used in other English coastal marshlands, whose purposes were to improve transport, land drainage or to by-pass the silted Wisbech estuary in the East Anglian Fenlands, the Rhee was constructed to supply water to flush away the sediment settling in the harbour of Romney. As such, it was unique in English marshlands.

This paper describes its progressive construction and operation as deduced from evidence of the Patent Roll of 1258 which describes the last stage of its construction, its operation and financing, and of the landscape and soils. This is discussed in the context of the terminal stages of a large tidal inlet where rapid silting was threatening disaster for New Romney, then still a port of international importance. Built in three stages, the Rhee became a large-scale human response to very rapid changes in the Romney Marsh coastline.

Introduction

The so-called Rhee Wall was an embanked watercourse which extended 12 km across the Romney Marsh coastal lowland from the upland near Appledore to Romney on the former coast (Fig. 9.1). Although it is the most prominent feature of the landscape of the Romney Marsh coastal lowland, its origin and purpose have long been an enigma, as is shown by numerous and varied theories about it. Dugdale hinted that it was a Roman sea wall, a hypothesis which was ‘confirmed’ by Elliott (Dugdale 1662; Elliott 1862; Furley 1880). Although that assertion was based on extremely flimsy evidence, it is a popular myth which continues in some quarters to this day. Scott Robertson (1880) realised that the very unusual boundary of the liberty of the medieval port of Romney implied that the Rhee had been a watercourse connected with that port, rather than a sea wall. On the basis of landscape and documentary evidence Ward (1940, 282) also discounted a Roman origin and any suggestion that it was a sea wall.

The Soil Survey map showed that, except for 2.2 km near Appledore, there is no difference between the sediments on one side and the other, confirming again that (with the exception near Appledore) the structure was never a sea wall (Green 1968). Brooks (1988, 92) showed that it was constructed directly across all the existing boundaries of parishes, manors and hundreds. Tatton-Brown (1988, 108) felt that it all dated from mid-13th century, and Vollans (1988, 128) was the first to state that it is clearly a composite feature, constructed in three different stages.

This article re-considers for what purpose, how and when the Rhee system developed and who was responsible for its construction and operation. It is based on evidence of documents, of the landscape and the detailed work of the Soil Survey (Green 1968). Evidence of walls and ditch patterns, a large proportion of which have disappeared or been degraded during the agricultural revolution of the last half century, is taken from tithe maps, the 1878 first edition six-inch and the 1960 1:25000 O.S. maps and from
Green's comprehensive map of the soils. The entry in the Calendar of the Patent Rolls of 21 June 1258 is fundamental to the discussion. It shows that the Rhee was constructed to supply water to scour away the silt being deposited by the tides in the harbour of New Romney, and that the last stage was built in or soon after 1258. The citizens of New Romney were responsible for constructing and operating it (Cal. Pat. Rolls 1247–58, 635). Although that entry has been frequently quoted it has never, remarkably, previously been explored in full, so it is printed here in the Appendix.

The Context of the Rhee

Romney Marsh developed naturally and was reclaimed behind a massive barrier beach of flint shingle. During the last two millennia major changes have taken place in that barrier and three very extensive tidal inlets have opened up successively through it, in the general areas of Hythe, New Romney and Rye (Fig. 9.1). Each of the inlets in turn provided an excellent sheltered haven for shipping and, on a coast facing the shortest crossing to the Continent, each in turn became the base for ports of local, national and international importance. But all of them were short-lived, succumbing to silting of their channels combined with narrowing of their entrances. It is necessary to summarise this background evolution since, in one way or another, the Rhee is related to all three inlets (Fig. 9.2).

The tides flowed in through the inlets and deposited their loads of silt and other sediments, thus building up the surface of the marsh, and leaving behind a legacy of complex networks of marsh channels and creeks. The Rhee crosses headwater creeks of the first inlet, which had its opening in the north-east corner of the Marsh and was open in Roman times (Cunliffe 1988; Eddison 2000, 43–7). In the 1960s a radiocarbon date obtained from shells buried in the sands filling one of the major creeks gave a date of 1550 ± 120 years BP, which made it seem unlikely that the Rhee could have been a Roman structure (Callow et al. 1964; Green 1968). However, dating of shells is always problematical since they may have been reworked and redeposited. Suffice it to say that it seems likely that this creek was filled in after the Roman period (Gardiner and Long, personal communication, 2002).

The new land surface left by the silt deposited in this inlet had begun to be colonised by AD 700 and, judging by the widespread distribution of the documented estates, it is likely that most of the north-east (later to be known as Romney Marsh proper), as well as an estate at Mistleham on Walland Marsh, had been colonised by 900 AD (Brooks 1988, 95–8). Domesday Book (1086) (Morgan
The Purpose, Construction and Operation of a 13th Century Watercourse

Fig. 9.2. A triple-phase schematic map showing the relationship of the Rhee watercourse to the three Romney Marsh inlets: It crossed some creeks of the Hythe inlet [1]. It was constructed to bring a supply of water to the Romney inlet [2]. It served as a sea wall limiting the extent of the Rye inlet [3].

1983) and *Domesday Monachorum* (c. 1100) (Douglas 1944) together show that by c. 1100 most of the parish churches on Romney Marsh proper existed – with the exception of Snave and Snargate which notably were the furthest from the sea.

In contrast, none of the churches on Walland Marsh (south of the Rhee) is recorded until the 12th century, except for Midley, whose record is so anomalous as to suggest strongly that the Midley in Domesday refers to a parish not on the Marsh at all (Eddison and Draper 1997, 82). Brookland and Fairfield were established in the phase of colonisation which began in the 12th century and moved progressively south-westwards. The Rhee cuts across, and is therefore later than, the estates, the field boundaries and the associated parish boundaries established in this phase of colonisation. The remarkable sub-rectangular landscape of the estate of Misleham can be dated to c. 1150 (Tatton-Brown 1988; Eddison and Draper 1997) and one which once belonged to Geoffrey Turcopule and subsequently to the hospital of St Stephen and St Thomas, New Romney, to c. 1190 (Butcher 1980, 19; Tatton-Brown 1988, 106–7).

In the meantime, while the land surface left by the first inlet was becoming occupied, a second tidal inlet, which was to become the base for Romney, opened up. The sea must have broken through the shingle barrier and flowed into and ‘captured’ a major back-barrier channel lying behind the Dungeness mass (Spencer *et al.* 1998). The timing of this marine incursion is uncertain. It appears to have taken place after the Roman period because, apart from the occasional coin, no evidence of Roman activity has been found in that area, and it must have occurred before AD 741 because by then a settlement was based on it. Romney is not named specifically in the charter which describes that settlement. But the fishing and farming settlement described beside the inlet included an oratory dedicated to St Martin, the only such dedication on the Marsh, and that is assumed to be the predecessor of the large medieval church of St Martin which later stood in New Romney. A second charter, dated c. AD 920, refers to a channel known as the Ruenesea (Brooks 1988). There is no documentary evidence to indicate where this channel was, but the name seems much more likely to have referred to the wide inlet behind the barrier (shown on Green’s map of 1968 and confirmed by Spencer *et al.* 1998) rather than the minor channel heading up towards Snargate suggested by Brooks (Brooks 1988; Allen 1996, 1999). Not long afterwards the name of that channel was
adapted for the settlement, as *Rumenal or Romenal*. By mid-11th century ports on the Channel coast were growing fast as a direct response to a significant rise in maritime trade, and Romney became one of the most important. a member of the Cinque Ports (Gardiner 2009). Its strategic importance is illustrated by the raids by Godwin and his sons in 1052 and William of Normandy immediately after the Battle of Hastings in 1066, both of whom were anxious to suppress and secure the town and port (Whitelock 1962). Commercial, cultural, ecclesiastical and political links with the Continent became strong and the town probably reached its peak in the 12th century, as witnessed by the magnificent church of St Nicholas.

Inevitably, however, this inlet began to silt up. A radiocarbon date on a *Cardium edule* shell coupled with abrupt reduction in sediment grain size obtained from the higher reaches of the inlet near Little Cheyne Court (TQ 986216) suggests that between 789 and 659 cal. years BP (between AD 1161 and 1291) high energy conditions in the channel changed swiftly to much quieter conditions (Evans et al. 2001).

The last three quarters of the 13th century were marked by extraordinary storminess. The first documented storm occurred in 1236 (Holloway 1849, 67). Further great storms were recorded in 1250, 1252 and 1287/88 (Matthew Paris 175–6, 272–3; Gervase of Canterbury 293). The storms dealt a final blow to the long-established southern shingle barrier which had kept the sea out of Walland Marsh, and broke it down in mid-13th century (Eddison 1998, 68–70). This event affected both the operation of the Rhee and, apparently, the configuration of a small part of it. By 1258 the tides were running up to Appledore and sea water was taken in to amplify the flow down the Rhee (Cal. Pat. Rolls 1247–58, 635). Also, probably slightly later, the sea flooded out of the channels and over the marshland, and was arrested by the Rhee (Green 1968, map). In this way the 2.2 km of the Rhee nearest Appledore functioned for perhaps 100 years as a sea wall.

The Rhee itself is a narrow tract enclosed between a pair of earth banks with, locally, traces of a third bank. It stands proud above the level of the marshland on either side, and a road runs along the top of it from Appledore to Hammonds Corner, 1.4 km from St Nicholas’ church, New Romney. As the Rhee was constructed across a landscape which had already been colonised, it must have interrupted existing drainage channels. It became the physical boundary between the drainage systems of Romney Marsh proper to the north and Walland Marsh to the south, and in 1308 was defined as the administrative boundary between those two levels (Trenchman Derville 1936, 13). Only the Five Waterings Sewer crosses it, bringing the drainage of the western part of Romney Marsh south to reach the sea near Rye, which it has done since at least the early 16th century. Even where that sewer crossed Walland Marsh it remained under the jurisdiction of Romney Marsh proper (Eddison 1995, 159–60).

To describe the Rhee as a wall, the name by which it has been known since the 15th century, is very misleading. The place-name Rhee is derived from the Old English *ea* meaning a major watercourse, in contrast to many other terms used for minor courses (Wallenberg 1934, 479; Paul Cullen personal communication). This supports the conclusion of Scott Robertson who pointed out the extraordinary shape of the liberty of the port of New Romney, more than 16 km long but often no wider than 45 m up to Appledore, although widening out into a balloon shape in the valley west of that. He attributed this to Romney’s need to control the Rhee watercourse (Scott Robertson 1880, 268–9, map). Importantly, the extraordinary boundary of the liberty also demonstrated the essential relationship of the Rhee to New Romney, which is further emphasised by the only surviving contemporary document.

The Patent Roll of 21 June 1258, the king’s confirmation of a petition by the people of New Romney, explains both the purpose of the Rhee and describes its operation at that date (Cal. Pat. Rolls 1247–58, 635, see Appendix). Its purpose was to flush out silt settling in the inlet which served as the port of Romney. By 1258 that inlet had become blocked by ‘obstacles’ on the seaward side of Old Romney. Whatever else the ‘obstacles’ may have included, it certainly amounted to large quantities of silt and sand, and after attempts to clear it had proved useless, instructions were given for extending the Rhee eastwards, down to the remaining port. Compensation was to the paid by the ‘barons and good men’ of Romney to the tenants of the land to be taken up for this work, either with different land to the same value or with the equivalent in money.

The citizens of Romney were also to finance the operation of the whole system. Three new sluices were to be constructed. The first was to be made ‘below Appledore’ to take in at high tide the salt water which by then was flowing up from Winchelsea. That water was to be retained when the tide went down so that, together with the river water apparently already entering the system, it could be directed down the ‘ancient course’ (i.e. to Old Romney) and on down the new extension. A second sluice was to be made at Snargate, and a third had the dual purpose of releasing the Rhee water into the port of Romney and preventing the sea from entering the east end of the system. Since it lacks any documentation, the earlier, pre-1258, history of the system has to be considered in the light of this description of its purpose and operation.

Detailed Description

The Rhee and its immediate surroundings are described here in three sections, which are identical with the three stages in its construction. The first division is made at
Snargate on the basis of a significant structural change, and the second near Old Romney at the point where the system ended before 1258 (Cal. Pat. Rolls 1247–58. 635).

Appledore to Snargate

The western end of the Rhee was, most unfortunately, obliterated when the Royal Military Canal was constructed in 1805. The site of the sluice 'below Appledore' may have been lost to those works. On the other hand the 'balloon' shape of the liberty in the valley between Appledore and the Isle of Oxney may be the administrative relic of a former holding basin for tidal water waiting to be released down the Rhee. If so, the sluice would probably now be obscured beneath sediments brought in by the tides at the end of the 13th century. This length is markedly irregular. In the 2.2 km stretch from Appledore to Hill View (TQ 98 1295) great variations occur both in the width of the structure and in its relationship to the land on either side. The distance between the two walls varies from 90 m near Appledore to a maximum of twice that near Appledore Station. While the north wall follows a relatively regular gently curving line, it is the line of the south wall which provides the irregularities, which are to some extent at least related to other walls running down into the marsh to the south. To the north lies the Appledore Dowels where the main marsh peat is within 0.3 m of the surface and the land surface is some 2.5 m below the top of the Rhee. To the south, in contrast, the land surface is only approximately 0.5 m below the Rhee.

These variations in the width of the Rhee and in its relation to the land on either side must have resulted from the influx of the sea from the south towards the end of the 13th century. The Rhee may have become exposed to the tides after the storms of the 1250s, and almost certainly was after those of 1287–8 succeeded in finally breaking asunder the Rye Bay shingle barrier (Gervase of Canterbury, 293; Eddison 1998). Subsequently, it probably remained accessible to high tides until around 1400, since in a dispute then between Christ Church Canterbury and Robertsbridge Abbey it was said that the boundaries of the 'towns' of Snargate and Appledore had been lost on account of the continual inundation of the sea (Holloway 1849, 126–7). The difference in height of the surface of the marsh on either side of the Rhee must be due in part to layers of additional sediments deposited on the south side, but also in part to wastage of peat on the north side where, without that covering of additional sediments, the peat can be expected to have been exposed to the atmosphere, at least seasonally.

In addition, the Soil Survey (Green 1968) mapped a third wall in the Dowels (still visible in low winter light), running closely parallel to the north wall and some 30 m to the north of it. It is continuous except, importantly, where it crosses a creek ridge at TQ 979296, indicating that when the wall was built the landscape had already been partially inverted and that the creek stood proud above its surroundings. The wall was therefore only necessary across the back-marsh surface, which was lower.
than the former creek. This third wall may have acted as a second line of defence, preventing any overflow from the Rhee from flowing further north across the Dowels.

Between Hill View and Snargate both the structure of the Rhee and its relationship to its surroundings become more regular. The two walls are a more uniform distance apart, though not yet parallel, the level of the marsh is the same on both sides of the Rhee and the patterns of soils and field boundaries are also the same on both sides. Significantly, the Rhee cuts across three field boundaries which were evidently established before it came into existence. Its course is, however, by no means straight. At Vinal Bridge, where the Five Waterings Sewer now passes under the road, there is a particularly tight S-bend. In addition, a significant dip in the road at Arrowhead (TQ983292) marks the site of a culvert which collapsed some time after the Five Waterings Sewer ceased to cross under the road at that point in 1623 (Eddison 1995, 159–61).

Snargate to Old Romney

At Snargate the character of the Rhee changes abruptly. From there to Old Romney it is almost straight. Apart from slight bends for 400 m near Brenzett, long straight sections are connected by very minor changes in direction, giving an overall impression of a very gentle curve which is convex to the south-west. The width is a uniform 45 m, and the structure is consistently about one metre above the level of the marshes on both sides. The pattern of the soils it crosses is continuous from one side to the other. Until 1258 the Rhee ended near the later site of Sycamore House. Old Romney, where the water was released into the Romney inlet (Cal. Pat. Rolls 1247–58, 635; Green 1968, map) (Fig. 9.4).

This length of the Rhee cuts across the boundaries of five parishes whose churches stood on Romney Marsh proper and whose land was later extended in remarkable parallel slices in a south-westerly direction across Walland Marsh, in the phase of colonisation which began around 1150 (Brooks 1988, 92; Eddison and Draper 1997, 79–80). This length was therefore constructed later than that date. Near Old Romney, it sliced through an 80-acre estate which had been transferred from Geoffrey Turcopule to the hospital of St Stephen and St Thomas at New Romney sometime between 1186 and 1190 (Butcher 1980, 19; Tatton-Brown 1988, 106–7). In 1614, when that estate was mapped by William Web for the then owners, Magdalen College Oxford, it consisted of some 74 acres (six having been taken in by the Rhee). Significantly, the map also shows that while the Rhee sliced dramatically across the estate (taking in those six acres) the northern boundary of the property was the northern sewer which is described below (see Fig. 9.5). This indicates that the northern sewer existed but that the Rhee did not when this estate was laid out. This length of the Rhee must therefore be later than c. 1190.

It is also important to note a small meandering sewer running approximately parallel to the Rhee a short distance away to the north (see Fig. 9.4). This meandering sewer is bounded on the north side by a minor bank. Both sewer and bank decrease in importance as distance from the inlet at Romney increases. Elaborate meanders at the Romney end decrease in magnitude and the width of the sediments associated with the creek becomes narrower towards Brenzett, almost tapering away to extinction towards Snargate. The bank, almost all of which has now been disturbed by ploughing, changed from a ‘major wall’ to ‘a minor or presumed wall’ (Green 1968, map and fig. 20; see also Allen 1996: 1999). Significantly, this combined feature of sewer and bank approaches the Rhee closely at three points: at Snargate; at Sycamore House, Old Romney, where it comes within a few metres of the Rhee; and at Ryeall Farm, where it looks as though the Rhee may have been curved in order to keep clear of the sewer. East of Brenzett, the sewer and bank cross some field boundaries which are presumed to be part of the c. 1150 colonisation and therefore the sewer seems to have originated later than that.

Importantly, the landscape evidence of this sewer and bank may be complicated by its adoption for a secondary use. In 1592 it was part of the Yokes Sewer east of Brenzett, and the Abbatridge Sewer west of that church, both of which were part of the Five Waterings system which drained in a north-westerly direction to beyond Snargate and then south to reach the sea near Rye (Langdon 1592; Eddison 1995, 159–61). But subsequently, sometime in the later 18th century, the direction of drainage was reversed between Brenzett and TR 022261 when that length was adopted as the central portion of the New Sewer designed to take flood-water from the Appledore Dowels eastwards to enter the sea through Clohsden Gut at the south end of the Dymchurch Waff, as it still does today. In order to maintain the flow of water down them, sewers have to be scourced frequently. Vegetation is often removed every three years, and accumulated sediment every five years. Particularly after its change of use in the 18th century, repeated scouring of this sewer may have increased its width, and dumping of sediment may have heightened the bank. It may be advisable to exercise caution when drawing conclusions about measurements of such features (see Allen 1999).

Old Romney to the Port of New Romney

Finally, in or very soon after 1258, the Rhee was extended for 2.9 km down to the much-reduced port (Fig. 9.6). It was the same width as before and consisted of three straight stretches with two slight but highly significant bends. Using the Soil Survey map, it is now possible to identify most of the places mentioned in the instructions to the surveyors involved in laying out the new course, including the two bends (Cal. Pat. Rolls 1247–58, 635). The extension started at the ‘cross of the hospital of infirm persons of Romenal which stands near Aghenepend’. The cross must
The northern sewer in
The 13th century Fathercourse

The northern sewer

The northern sewer, tidal before 1258

The Romney Inlet, tidal before 1258

Estate of the hospital at New Romney

Areas not mapped by the Soil Survey in 1968

Suic

Fig. 9.4. Stage 2 of the Rhee, before 1258. The sewer running parallel to it on the north side forms the boundary of the estate of the hospital at New Romney.

have marked the north-east corner of the hospital (formerly Turcopule) estate, and up to 1258 also stood at the end of the Rhee, some 50 m east of Sycamore House (marked 1 on Fig. 9.6). The course then crossed the former tidal inlet to reach the next landmark, Effeton. That name has long been known, somewhat vaguely, to be associated with Old Romney: it is now shown to refer to the field in which St Clement’s church stands (2 on Fig. 9.6). As soon as the Rhee was safely across the former inlet, it changed direction, turning east towards New Romney. At this point the Rhee cuts across some pre-existing field boundaries, as can be seen on Fig. 9.7. Also at this point, the glebe of Old Romney lies on both sides of the Rhee. Since it is reasonable to assume that the glebe of the 13th century was similar, if not identical, to that mapped in the 19th it is very probable that the 1258 extension of the Rhee bisected it (Gardiner 1995, 343, fig. 1). The third landmark, the house of William le Wyll, was ephemeral and eludes identification but presumably was mentioned because the surveyors needed an additional marker in the long 2 km stretch between Effeton and the next bend. The fourth landmark was melepend, a millpond presumed to be connected with a tide mill, which very probably marked the final change in direction, at the present Hammonds Corner (marked 4? on Fig. 9.6). From there it headed straight for a further 500 m to the new sluice where the water was to fall ‘directly into the port’ (5 on Fig. 9.6).

Discussion

The port of Romney, which rose to prominence in mid-11th century, was founded on one of the three major inlets of the sea which were such important features of the evolution of the Romney Marsh coastal lowland. As suggested by the reference to the river of Newenden (later known as the Rother) in the Patent Roll, this inlet may have been the conduit by which some river water reached the sea (Cal. Pat. Rolls 1247–58, 635). However, the quantity of fresh water flowing down the Rother, the principal river entering Romney Marsh, is very limited and it also varies seasonally. It has been shown elsewhere that in the 17th and early 18th centuries the flow into the Rye inlet was insufficient to lift the silt which settled outside the tidal sluices in the summer (Eddison 1988, 1995). Hence the sea retreated rapidly, and the inlet silted up. It is highly likely that this was also the pattern of events in the Romney inlet some four centuries earlier. One can infer that the effect of any fresh water entering the Romney inlet naturally would have been minimal in
Fig. 9.5. The Spitleland estate of the former hospital at New Romney, mapped by William Web in 1614 for Magdalen College Oxford, with north west at the bottom of the page. The sewer running south-east from Brenzett formed the northern boundary of the estate, and Yokes Lane from lychurch runs along the bank beside it. The Rhee (Y) is shown at left, cutting across the estate. (Part of Steer map 24. Magdalen College, Oxford).
comparison with the twice-daily influx of the silt-laden tides into an inlet of hundreds of hectares, particularly one which lay at the east end of the English Channel where the tidal range is high.

If, however, the outfall of water could be increased there was some hope of preventing, or at least delaying, the silting. In the 17th century the use of indraughts was common, whereby fresh water was taken in and impounded behind the tidal sluices, and then released all at once at low tide. The combination of additional volume and the speed of the flow were sufficient to lift some of the silt. It must be assumed that the terminal sluices on the Rhee, first at Old Romney and after 1258 near New Romney were operated on similar principles. It was strategically placed on the side of the inlet, where silting would have been less than at the head.

Even before construction of the Rhee began, sewers would have drained the fresh water from the adjacent marshland and released it into the inlet through small tidal sluices. The long northern sewer from Brenzett to Sycamore House was no doubt one of these. But average annual rainfall on the Marsh is very low, less than 70 cm (Green 1968, 6), and therefore when the port was threatened by accumulating silt, the first stage of the embanked Rhee was built to bring additional water from more reliable, upland sources as far as Snargate, from whence it was channelled down that sewer to a sluice near the present site of Sycamore House. It is possible also that salt water may have been admitted through that sluice at high tide to increase the subsequent outflow. This system may have functioned satisfactorily for a short time but the multiple bends in the sewer must have seriously slowed down the passage of water. A wider, straighter watercourse would have been infinitely more efficient and beneficial. Therefore the embanked Rhee was extended 5 km from Snargate to Sycamore House. This length was indeed almost straight, although it curved slightly to avoid the northern sewer. It entered the inlet very close to the outfall of that sewer. The dates of these first two phases remain uncertain, but the first appears to post-date the mid-12th century phase of colonisation and the second post-dates the establishment of Turcopule estate, which was 1190 at the latest. Looking laterally, in view of the rapid pace of silting in the 17th century in the Wainway, a major branch of the Rye inlet, it seems likely that the sequence of events at Romney was equally fast, and therefore that both of the first two stages of the Rhee were constructed within the 13th century (author’s unpublished research).

Postscript

In the later 13th and in the 14th centuries a relatively small length of the original structure near Appledore was affected by incursion by the sea from the south, as described above. In 1337 an adjustment took place to ‘an old trench leading from the arm of the sea called Appledore to the town of Romney’, presumably part of the Rhee. This ‘old trench’ was said to have been so obstructed by shingle and sand for 30 years that ships could no longer pass by it to Romney ‘as they used to do’. The sea had made another trench better adapted for the passage of ships, so the landowners were given a licence to fill in the old trench. The new trench was 2.5 km (500 perches) long and 100 m (20 perches) broad whereas the old trench had been 3.5 km long (700 perches) long and 50 m (10 perches) broad. The new trench crossed the manors of Aldington, Appledore, Kenardington and Woodruff, which belonged respectively to the archbishop, Christ Church Canterbury, a lay owner named Margaret de Basinges and Robertsbridge Abbey (Cal. Pat. Rolls, 1334–38, 457).
Tatton Brown suggested that this adjustment took place in the part of the Rhee near Appledore (Tatton-Brown 1988, 108, fig. 9.1). Since that area was exposed to the sea at that time, that seems the likely location. Alternately, it may have been, as Scott Robertson believed, part of the system in the valley west of Appledore. Apart from that alteration, the topography of the original structure seems to have remained unchanged until about 1950. Since then most of it has suffered from ploughing and parts have also been disturbed by improvements to the A 259 which runs along the top of it, notably near Brenzett school and at Old Romney.

The question of whether and to what extent the Rhee was used for navigation must remain open. At present the evidence is very sparse, amounting to that in the 1337 Patent Roll cited above which mentions shipping, and possible further evidence in the cartulary and other records of New Romney (Scott Robertson 1880, 262). No doubt an inland passage from Rye and Winchelsea to Romney, avoiding Dungeness, would have been welcome. But that would imply that either that cargoes had to be trans-shipped round each of the three sluices, or that each sluice had a navigation lock. The first would have been time-consuming, and the second expensive. So where is the evidence?

Other Coastal Marshlands

Early medieval river channels in other English coastal lowlands have not received a great deal of academic attention. However, the literature concerned with three major marshlands – the Fenlands, the Somerset Levels and the levels south of the Humber – gives a general impression that their waterways were probably used extensively at an early date, and that a number of river courses were straightened, embanked, diverted or even
Conclusion

The Rhee was an artificial waterway built in three stages, in a prolonged attempt to scour away the silt which was building up in one of the extensive marine inlets of Romney Marsh and threatening the livelihood of the port of New Romney. It was financed by that town, which serves to illustrate the dependence the town placed on the waterway. It began as a relatively short structure running from Appledore to Snargate and was later extended to Old Romney. Finally, in 1258 it was extended a second time, to within 1 km of New Romney. Thus, what began as a short 4 km waterway eventually became over 12 km long. By degrees, it became a very prominent feature, built in response to the rapid changes which characterise the Romney Marsh coastline. It is suggested, on the basis of better-documented silting in comparable terminal stages of a branch of the Rye inlet several centuries later, that all three stages of the Rhee were probably constructed during the 13th century.

Evidently the system must have worked well and the people of Romney must have had great confidence in it, otherwise they would not have considered undertaking not only the capital expenditure of twice extending it, but also the annual running costs of maintaining it. Because the 1258 extension crossed the former inlet, we can deduce that the tides had already retreated from Old Romney, and that by then New Romney had lost a large part of its former sheltered haven. Remarkably, the system remained in operation until c. 1400, or possibly as late as 1430 (Scott Robertson 1880, 273; Vollans 1988, 136–7). But by then it must have served a much-diminished harbour, the exact location and nature of which has yet to be explored.

Unlike channels in the other marshlands flowing across the peat fens, the Rhee was constructed across marshland which had already been reclaimed, some of which can be dated by referring to contemporary documentary sources. This is a great advantage for the landscape historian, since it provides the earliest dates at which part of the Rhee can have been constructed. Another advantage stems from the end of its operational life. When it was no longer economic to maintain the waterway, it was abandoned without any attempt to alter the 13th- and 14th-century topography. The land described as ‘between the walls’ was rented out as pasture. Fortunately that happened at a time when, depopulated as a result of the sequence of the economic downturn in the early 14th century, the demographic disasters of the Black Death in 1348–9 and the recurring epidemics of bubonic plague, the marsh economy was turning over from arable to pastoral farming. The surface of the Marsh in general became turf and, including the Rhee, remained under grass until c. 1950.

Nothing comparable with the Rhee has emerged from a search of the literature of other marshlands, either in respect of its date, its age, its function, its size, or its relationship to the landscape it crossed. Indeed, the literature serves to emphasise the fundamental difference between Romney Marsh, whose evolution and occupation was dominated by extensive and rapidly-changing marine inlets and other marshlands which were dominated by equally extensive but much longer-lasting areas of fresh-water fen. It seems that the Rhee was indeed unique.

Acknowledgements

In 1996 Dr Mark Gardiner and I received a small grant from the Romney Marsh Research Trust to conduct a pilot investigation into the Rhee, which we acknowledge with gratitude. At that time we could reach few significant conclusions, but I benefited greatly from Mark’s enthusiastic and stimulating input, and I have since been grateful to him for supplying references, for general discussions and for kindly commenting on a draft of this paper. The present article has arisen as a result of further reflection on my part.

I am grateful to Magdalen College Oxford for permission to reproduce part of Steer Map 24 which forms Fig. 9.5, and to Mike Scott who photographed it. The aerial photograph appearing as Fig. 9.7 is from the collection of the Cambridge University Unit for Landscape Modelling, Aerial Photography Library. It is Crown Copyright 1949 and is reproduced with the permission of the Controller of Her Majesty’s Stationery Office. Finally, I owe particular thanks to Ian Agnew who made fair copies of my drafts for Figs. 9.1, 9.2, 9.3, 9.4 and 9.6.

Appendix

The following is the complete text of the entry concerned with the Rhee in the Calendar of the Patent Roll dated 21 June 1258:

‘As the king has understood that the port of Rominal is perishing, to the detriment of the town of Rominal, unless the course of the river of Newenden, upon which the said port was founded, and which has been diverted by an inundation of the sea, be brought back to the said port, and now hears by inquisition made by Nicholas de Haudlo whom he sent to those parts to provide measures for bringing the river back to the port by the old course or by another, that the river cannot be brought back or the port saved unless the obstructions in the old course be removed, and a new course made through the lands of certain
men of those parts, near the old course, to wit, from a cross of the hospital of infirm persons of Ramenel which stands near Agnhemepend as far as Effeton, and from Effeton to the house of William le Wyll, and so to Melepend and from Melepend down to the said port: so that a sluice be made below Appledore to receive the salt water entering the river by inundation of the sea from the parts of Winchelsea, and retain it in the ebb of the sea, that such water with the water of the river may come together by the ancient course to the new course, and so by that course fall directly into the said port: and so that a second sluice be made at Snegate and a third by the port where the said water can fall into the sea, to retain merely the water of the sea's inundation on that side that it enter not into the said course; reserving nevertheless the ancient and oblique course from the said cross to the port. The king therefore commands the said Nicholas to go to the said port and by jury of 24 knights and others of the vicinage make an estimate of how much of the land of other persons would have to be taken to make the new said course and sluices and the value of such land, and to assign to the tenants of such land of equal value or more out of land or money of the barons and good men of the said port, to remove the obstructions of the old course, and to cause the new course and sluices to be made in the lands of any persons whatsoever where it is expedient that they should be made for the common utility and improvement of the port and town; and the sheriff of Kent is to be aiding herein.'

References

Published works:
Gervase of Canterbury Opera ii, ed. W. Stubbs 1880, Rolls Series 73.

Elliott, J. 1862. in Lewin, T. The invasion of Britain by Julius Caesar. London.
Fowler, G. 1934. The extinct waterways of the Fens, Geographical Journal 83, 32.

Wallenberg, J.K. 1934. The Place-Names of Kent. Uppsala.

Maps

Langdon, T. 1592. The plot of Romney Marsh, describing as well the common watercourses with their heads, arms and pinnocks, bridges and principal guts... All Souls College Oxford KeS19.

Web, W. 1614. Lands in Romney and Walland Marsh known as Spitleland ... held by Magdalen College and formerly held by the late chapel of St Stephen and St Thomas at New Romney. Magdalen College. Oxford, Steer map 24.

Aerial photograph

The Rhee at Old Romney (19 July 1949). Cambridge University Unit for Landscape Modelling, Aerial Photography Library DY 83.